La colaboración científica internacional del Futuro Colisionador Circular (FCC, por sus siglas en inglés) ha enviado para su publicación el Informe del Diseño Conceptual (CDR), un documento de cuatro volúmenes que presenta las diferentes opciones para construir un gran acelerador de partículas circular en el futuro.
Este documento muestra las grandes oportunidades para la investigación en física que ofrece una nueva máquina que opere a una energía e intensidad sin precedentes, y describe los retos, coste y calendario para su posible realización.
El objetivo del FCC es proporcionar un anillo de 100 km para un acelerador de partículas con una energía de hasta 100 TeV
En los próximos dos años, la comunidad científica de física de partículas actualizará la Estrategia Europea de Física de Partículas, que trazará el futuro de la disciplina más allá del Gran Colisionador de Hadrones (LHC). La hoja de ruta de la disciplina deberá conducir a decisiones cruciales sobre investigación y desarrollo en los próximos años, junto con una visión para construir el acelerador de partículas que suceda al LHC y sea capaz de expandir significativamente nuestro conocimiento de la materia y el universo.
El nuevo informe contribuye a la Estrategia Europea, en cuyo proceso de renovación se examinará la oportunidad para construir un futuro acelerador de partículas circular junto con otras opciones de aceleradores para sustituir al LHC en el CERN como el acelerador lineal CLIC.
El informe del diseño conceptual del FCC es un logro importante. Muestra el enorme potencial del FCC para mejorar nuestro conocimiento de la física fundamental y para conseguir avances en muchas tecnologías que tienen un amplio impacto en la sociedad”, declara la Directora General del CERN, Fabiola Gianotti.
“Aunque presenta nuevos y enormes desafíos –añade–, el FCC se beneficiaría de la experiencia del CERN, así como de sus infraestructuras y complejo de aceleradores que se han desarrollado durante más de medio siglo”.
Puerta hacia la 'nueva física'
El descubrimiento del bosón de Higgs en el LHC abrió un nuevo camino para la investigación, puesto que esta nueva partícula elemental podría ser una puerta hacia nueva física. Por tanto, realizar estudios detallados de las propiedades del bosón de Higgs es una prioridad para cualquier acelerador de física de altas energías en el futuro.
Además, se requieren evidencias experimentales que den cuenta de la física más allá del modelo estándar como la materia oscura, o el predominio de la materia sobre la antimateria. La búsqueda de nueva física, para cuyo descubrimiento un acelerador circular tendrá un gran potencial, es por tanto de primordial importancia para realizar un progreso significativo en nuestro entendimiento del universo.
El estudio de diseño del FCC ha sido un gran esfuerzo, solo posible gracias a una gran colaboración internacional. Durante más de cinco años y con el apoyo de la Comisión Europea a través del programa Horizonte 2020, esta colaboración involucra más de 1.300 científicos de 150 universidades, institutos de investigación y socios industriales que participan activamente en el esfuerzo del diseño y en la I+D de nuevas tecnologías que preparen el desarrollo sostenible y la operación eficiente de un posible futuro acelerador de partículas circular.
“El objetivo final del FCC es proporcionar un anillo de 100 kilómetros para un acelerador superconductor de protones, con una energía de hasta 100 TeV, un orden de magnitud más potente que el LHC (opera a 14 TeV y tiene 27 km)", asegura el director de Aceleradores y Tecnología del CERN, Frédérick Bordry.
El estudio para el FCC comenzó en 2014 y viene directamente de la anterior actualización de la Estrategia Europea aprobada en mayo de 2013, que recomendaba llevar a cabo en Europa estudios de diseño y viabilidad “para estar en posición de preparar un ambicioso proyecto de un acelerador post-LHC en el CERN de cara a la próxima actualización de la Estrategia”.
El FCC proporcionaría choques entre electrones y positrones (su antipartícula), entre protones y entre iones a unas energías e intensidades sin precedentes, con la posibilidad de realizar también choques entre electrones y protones y entre electrones e iones.
El calendario del FCC prevé comenzar con una máquina electrón-positrón, como el acelerador LEP que precedió al LHC”, apunta Bordry, “y esto permitiría un rico programa de investigación que beneficiaría a la comunidad de física de partículas en el siglo XXI”.
Escalas energéticas sin precedentes
Usando una nueva generación de imanes superconductores de alto campo, el colisionador de protones FCC ofrecería una amplia variedad de oportunidades de nueva física. Alcanzar energías de más de 100 TeV permitiría estudios sobre cómo la partícula de Higgs interactúa con otra partícula similar, así como una amplia exploración del papel de la ruptura de la simetría electrodébil en la historia de nuestro universo.
Esta máquina será una ‘fábrica de Higgs’ muy potente, permitiendo la detección de nuevos e inusuales procesos físicos
Una máquina así permitiría también acceder a escalas energéticas sin precedentes, buscando nueva física con múltiples oportunidades de grandes descubrimientos. Además, se podrían colisionar iones pesados, permitiendo un rico programa de investigación en este campo para estudiar el estado de la materia en el universo primitivo.
“Los colisionadores de protones han sido la herramienta elegida durante generaciones para aventurarse en la nueva física en las escalas más pequeñas. Un gran colisionador de protones sería un gran salto adelante en esta exploración, y extendería decisivamente el programa de investigación más allá de los resultados proporcionados por el LHC y por un posible colisionador electrón-positrón”, declara el director de Investigación y Computación del CERN, Eckhard Elsen.
Un acelerador de electrones y positrones de 90 a 365 GeV con gran luminosidad podría ser el primer paso. Esta máquina sería una ‘fábrica de Higgs’ muy potente, permitiendo la detección de nuevos e inusuales procesos físicos, así como medidas de las partículas conocidas con una precisión nunca antes alcanzada. Estas medidas precisas proporcionarán una gran sensibilidad para detectar posibles desviaciones de las expectativas del Modelo Estándar que serían un signo de nueva física.
El coste de este gran colisionador circular electrón-positrón estaría en el rango de los 9.000 millones de euros
Costes y plazos estimados
El coste de un gran colisionador circular electrón-positrón estaría en el rango de los 9.000 millones de euros, incluyendo 5.000 millones de la obra civil para construir un túnel de 100 kilómetros. Este acelerador daría servicio a la comunidad de física de partículas mundial durante 15 o 20 años.
El programa de investigación podría comenzar a partir de 2040, cuando finalice la etapa de alta luminosidad del LHC. El coste estimado para una máquina superconductora de protones que utilizaría el mismo túnel de 100 kilómetros rondaría los 15.000 millones de euros. Esta máquina comenzaría a operar a finales de la década de 2050.
Los complejos instrumentos desarrollados para la física de partículas son ricas fuentes de nuevos conceptos, innovaciones y tecnologías punteras que benefician varias disciplinas de investigación aplicada y dan lugar eventualmente a muchas aplicaciones que tienen un impacto significativo en la economía del conocimiento y la sociedad.
Un acelerador circular ofrecería extraordinarias oportunidades para la industria, contribuyendo a avanzar en los límites de la tecnología. También proporcionaría una educación excepcional para una nueva generación de investigadores e ingenieros.
Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.
Cookies estrictamente necesarias
Las cookies estrictamente necesarias tiene que activarse siempre para que podamos guardar tus preferencias de ajustes de cookies.
Si desactivas esta cookie no podremos guardar tus preferencias. Esto significa que cada vez que visites esta web tendrás que activar o desactivar las cookies de nuevo.
Cookies de analítica
Esta web utiliza Google Analytics para recopilar información anónima tal como el número de visitantes del sitio, o las páginas más populares.
Dejar esta cookie activa nos permite mejorar nuestra web.
¡Por favor, activa primero las cookies estrictamente necesarias para que podamos guardar tus preferencias!